Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731906

RESUMO

Roots are the hidden and most important part of plants. They serve as stabilizers and channels for uptaking water and nutrients and play a crucial role in the growth and development of plants. Here, two-dimensional image data were used to identify quantitative trait loci (QTL) controlling root traits in an interspecific mapping population derived from a cross between wild soybean 'PI366121' and cultivar 'Williams 82'. A total of 2830 single-nucleotide polymorphisms were used for genotyping, constructing genetic linkage maps, and analyzing QTLs. Forty-two QTLs were identified on twelve chromosomes, twelve of which were identified as major QTLs, with a phenotypic variation range of 36.12% to 39.11% and a logarithm of odds value range of 12.01 to 17.35. Two significant QTL regions for the average diameter, root volume, and link average diameter root traits were detected on chromosomes 3 and 13, and both wild and cultivated soybeans contributed positive alleles. Six candidate genes, Glyma.03G027500 (transketolase/glycoaldehyde transferase), Glyma.03G014500 (dehydrogenases), Glyma.13G341500 (leucine-rich repeat receptor-like protein kinase), Glyma.13G341400 (AGC kinase family protein), Glyma.13G331900 (60S ribosomal protein), and Glyma.13G333100 (aquaporin transporter) showed higher expression in root tissues based on publicly available transcriptome data. These results will help breeders improve soybean genetic components and enhance soybean root morphological traits using desirable alleles from wild soybeans.


Assuntos
Mapeamento Cromossômico , Glycine max , Raízes de Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Glycine max/genética , Glycine max/anatomia & histologia , Glycine max/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Mapeamento Cromossômico/métodos , Fenótipo , Cromossomos de Plantas/genética , Ligação Genética , Genótipo
2.
Exp Mol Med ; 56(4): 987-1000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622197

RESUMO

Transcriptional programs governed by YAP play key roles in conferring resistance to various molecular-targeted anticancer agents. Strategies aimed at inhibiting YAP activity have garnered substantial interest as a means to overcome drug resistance. However, despite extensive research into the canonical Hippo-YAP pathway, few clinical agents are currently available to counteract YAP-associated drug resistance. Here, we present a novel mechanism of YAP stability regulation by MAP3K3 that is independent of Hippo kinases. Furthermore, we identified MAP3K3 as a target for overcoming anticancer drug resistance. Depletion of MAP3K3 led to a substantial reduction in the YAP protein level in melanoma and breast cancer cells. Mass spectrometry analysis revealed that MAP3K3 phosphorylates YAP at serine 405. This MAP3K3-mediated phosphorylation event hindered the binding of the E3 ubiquitin ligase FBXW7 to YAP, thereby preventing its p62-mediated lysosomal degradation. Robust YAP activation was observed in CDK4/6 inhibitor-resistant luminal breast cancer cells. Knockdown or pharmacological inhibition of MAP3K3 effectively suppressed YAP activity and restored CDK4/6 inhibitor sensitivity. Similarly, elevated MAP3K3 expression supported the prosurvival activity of YAP in BRAF inhibitor-resistant melanoma cells. Inhibition of MAP3K3 decreased YAP-dependent cell proliferation and successfully restored BRAF inhibitor sensitivity. In conclusion, our study reveals a previously unrecognized mechanism for the regulation of YAP stability, suggesting MAP3K3 inhibition as a promising strategy for overcoming resistance to CDK4/6 and BRAF inhibitors in cancer treatment.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Resistencia a Medicamentos Antineoplásicos , Lisossomos , Proteólise , Proteínas Proto-Oncogênicas B-raf , Proteínas de Sinalização YAP , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Lisossomos/metabolismo , Linhagem Celular Tumoral , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fosforilação , Melanoma/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Feminino , Antineoplásicos/farmacologia
3.
Front Plant Sci ; 14: 1251157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860237

RESUMO

Fusarium root rot, caused by Fusarium solani, is a major post-harvest disease in sweet potatoes (Ipomoea batatas (L.) Lam.). An effective strategy for controlling this disease is the development of resistant varieties. In this study, a genome-wide association study (GWAS) was conducted on 96 sweet potato genotypes to identify novel candidate loci and dissect the genetic basis of Fusarium root rot resistance. Genotyping was performed using genotyping-by-sequencing (GBS), and 44,255 SNPs were identified after filtering. The genotypes (n = 96) were evaluated through resistance tests in 2021 and 2022, separately and combined. The GWAS identified two significant SNP markers (LG3_22903756 and LG4_2449919) on chromosomes 3 and 4 associated with Fusarium root rot resistance, respectively. Lesion length showed significant differences between homozygous A and G alleles of LG3_22903756, which can potentially be used to develop molecular markers for selecting accessions resistant to Fusarium root rot. Expression analysis of 11 putative genes flanking the significant SNPs revealed the alteration in the expression of nine genes, indicating their possible involvement in Fusarium root rot resistance. The results of this study will aid in the marker-assisted selection and functional analysis of candidate genes for Fusarium root rot resistance in sweet potatoes.

4.
Theor Appl Genet ; 136(7): 166, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393202

RESUMO

KEY MESSAGE: One major quantitative trait loci and candidate gene for salt tolerance were identified on chromosome 3 from a new soybean mutant derived from gamma-ray irradiation, which will provide a new genetic resource for improving soybean salt tolerance. Soil salinity is a worldwide problem that reduces crop yields, but the development of salt-tolerant crops can help overcome this challenge. This study was conducted with the purpose of evaluating the morpho-physiological and genetic characteristics of a new salt-tolerant mutant KA-1285 developed using gamma-ray irradiation in soybean (Glycine max L.). The morphological and physiological responses of KA-1285 were compared with salt-sensitive and salt-tolerant genotypes after treatment with 150 mM NaCl for two weeks. In addition, a major salt tolerance quantitative trait locus (QTL) was identified on chromosome 3 in this study using the Daepung X KA-1285 169 F2:3 population, and a specific deletion was identified in Glyma03g171600 (Wm82.a2.v1) near the QTL region based on re-sequencing analysis. A kompetitive allele-specific PCR (KASP) marker was developed based on the deletion of Glyma03g171600 which distinguished the wild-type and mutant alleles. Through the analysis of gene expression patterns, it was confirmed that Glyma03g171700 (Wm82.a2.v1) is a major gene that controls salt tolerance functions in Glyma03g32900 (Wm82.a1.v1). These results suggest that the gamma-ray-induced mutant KA-1285 has the potential to be employed for the development of a salt-tolerant cultivar and provide useful information for genetic research related to salt tolerance in soybeans.


Assuntos
Glycine max , Glycine max/genética , Alelos , Raios gama , Genótipo , Reação em Cadeia da Polimerase
5.
Plants (Basel) ; 12(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986992

RESUMO

The utilization of wild soybean germplasms in breeding programs increases genetic diversity, and they contain the rare alleles of traits of interest. Understanding the genetic diversity of wild germplasms is essential for determining effective strategies that can improve the economic traits of soybeans. Undesirable traits make it challenging to cultivate wild soybeans. This study aimed to construct a core subset of 1467 wild soybean accessions of the total population and analyze their genetic diversity to understand their genetic variations. Genome-wild association studies were conducted to detect the genetic loci underlying the time to flowering for a core subset collection, and they revealed the allelic variation in E genes for predicting maturity using the available resequencing data of wild soybean. Based on principal component and cluster analyses, 408 wild soybean accessions in the core collection covered the total population and were explained by 3 clusters representing the collection regions, namely, Korea, China, and Japan. Most of the wild soybean collections in this study had the E1e2E3 genotype according to association mapping and a resequencing analysis. Korean wild soybean core collections can provide helpful genetic resources to identify new flowering and maturity genes near the E gene loci and genetic materials for developing new cultivars, facilitating the introgression of genes of interest from wild soybean.

6.
Sci Rep ; 12(1): 14944, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056125

RESUMO

Phytotoxicity is caused by the interaction between plants and a chemical substance, which can cause critical damage to plants. Understanding the molecular mechanism underlying plant-chemical interactions is important for managing pests in crop fields and avoiding plant phytotoxicity by insecticides. The genomic region responsible for sensitivity to phytotoxicity of etofenprox (PE), controlled by a single dominant gene, was detected by constructing high density genetic map using recombination inbred lines (RILs) in soybean. The genomic region of ~ 80 kbp containing nine genes was identified on chromosome 16 using a high-throughput single nucleotide polymorphism (SNP) genotyping system using two different RIL populations. Through resequencing data of 31 genotypes, nonsynonymous SNPs were identified in Glyma.16g181900, Glyma.16g182200, and Glyma.16g182300. The genetic variation in Glyma.16g182200, encoding glycosylphosphatidylinositol-anchored protein (GPI-AP), caused a critical structure disruption on the active site of the protein. This structural variation of GPI-AP may change various properties of the ion channels which are the targets of pyrethroid insecticide including etofenprox. This is the first study that identifies the candidate gene and develops SNP markers associated with PE. This study would provide genomic information to understand the mechanism of phytotoxicity in soybean and functionally characterize the responsive gene.


Assuntos
Glycine max , Piretrinas , Mapeamento Cromossômico , Genes de Plantas , Polimorfismo de Nucleotídeo Único , Piretrinas/metabolismo , Piretrinas/toxicidade , Glycine max/genética , Glycine max/metabolismo
7.
Cancers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626017

RESUMO

BRCA1 L1780P BRCT domain mutation has been recognized as a pathogenic mutation in patients with breast cancer. However, the molecular significance of this mutation has not yet been studied in triple-negative breast cancer (TNBC) cells in vitro. We established MDA-MB 231, HCC1937, and HCC1395 TNBC cell lines expressing BRCA1 L1780P mutant. BRCA1 L1780P mutant TNBC cells showed increased migration and invasion capacity, as well as increased sensitivity to olaparib and carboplatin compared to BRCA1 wild-type cells. BRCA1 L1780P mutant TNBC cells showed decreased RAD51 expression and reduced nuclear RAD51 foci formation following carboplatin and olaparib treatment. The molecular interaction between p-ATM and BRCA1 was abrogated following introduction of BRCA1 L1780P mutant plasmid in TNBC cells, suggesting that the BRCA1 L1780P mutation disrupts the p-ATM-BRCA1 protein-protein interaction. We established an olaparib-resistant BRCA1 L1780P mutant TNBC cell line by chronic drug treatment. Olaparib-resistant cell lines showed upregulation of RAD51 expression upon olaparib treatment, and reduction in RAD51 expression in olaparib-resistant cells restored olaparib sensitivity. Collectively, these results suggest that the BRCA1 L1780P mutation impairs RAD51 recruitment by disrupting p-ATM-BRCA1 interaction, which is a crucial molecular factor in homologous recombination and olaparib sensitivity. Further therapeutic targeting of RAD51 in BRCA1 L1780P mutant breast cancer is warranted.

8.
Plants (Basel) ; 10(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34961184

RESUMO

Stomatal observation and automatic stomatal detection are useful analyses of stomata for taxonomic, biological, physiological, and eco-physiological studies. We present a new clearing method for improved microscopic imaging of stomata in soybean followed by automated stomatal detection by deep learning. We tested eight clearing agent formulations based upon different ethanol and sodium hypochlorite (NaOCl) concentrations in order to improve the transparency in leaves. An optimal formulation-a 1:1 (v/v) mixture of 95% ethanol and NaOCl (6-14%)-produced better quality images of soybean stomata. Additionally, we evaluated fixatives and dehydrating agents and selected absolute ethanol for both fixation and dehydration. This is a good substitute for formaldehyde, which is more toxic to handle. Using imaging data from this clearing method, we developed an automatic stomatal detector using deep learning and improved a deep-learning algorithm that automatically analyzes stomata through an object detection model using YOLO. The YOLO deep-learning model successfully recognized stomata with high mAP (~0.99). A web-based interface is provided to apply the model of stomatal detection for any soybean data that makes use of the new clearing protocol.

9.
Front Plant Sci ; 12: 764100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777447

RESUMO

Sweetpotato is an emerging food crop that ensures food and nutrition security in the face of climate change. Alpha-linoleic acid (ALA) is one of the key factors affecting plant stress tolerance and is also an essential nutrient in humans. In plants, fatty acid desaturase 8 (FAD8) synthesizes ALA from linoleic acid (LA). Previously, we identified the cold-induced IbFAD8 gene from RNA-seq of sweetpotato tuberous roots stored at low-temperature. In this study, we investigated the effect of IbFAD8 on the low-temperature storage ability and ALA content of the tuberous roots of sweetpotato. Transgenic sweetpotato plants overexpressing IbFAD8 (TF plants) exhibited increased cold and drought stress tolerance and enhanced heat stress susceptibility compared with non-transgenic (NT) plants. The ALA content of the tuberous roots of TF plants (0.19 g/100 g DW) was ca. 3.8-fold higher than that of NT plants (0.05 g/100 g DW), resulting in 8-9-fold increase in the ALA/LA ratio in TF plants. Furthermore, tuberous roots of TF plants showed better low-temperature storage ability compared with NT plants. These results indicate that IbFAD8 is a valuable candidate gene for increasing the ALA content, environmental stress tolerance, and low-temperature storage ability of sweetpotato tuberous roots via molecular breeding.

10.
Front Plant Sci ; 12: 704239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421953

RESUMO

The root is the most critical plant organ for water and nutrient acquisition. Although the root is vital for water and nutrient uptake, the diverse root characters of soybean still need to be identified owing to the difficulty of root sampling. In this study, we used 150 wild and 50 cultivated soybean varieties to collect root image samples. We analyzed root morphological traits using acquired-image. Except for the main total length (MTL), the root morphological traits for most cultivated and wild plants were significantly different. According to correlation analysis, the wild and cultivated plants showed a significant correlation among total root length (TRL), projected area (PA), forks, total lateral length (TLL), link average diameter, and MTL. In particular, TRL was highly correlated with PA in both cultivated (0.92) and wild (0.82) plants compared with between MTL (0.43 for cultivated and 0.27 for wild) and TLL (0.82 for cultivated and 0.52 for wild). According to principal component analysis results, both plants could be separated; however, there was some overlap of the traits among the wild and cultivated individuals from some regions. Nevertheless, variation among the cultivated plants was higher than that found in the wild plants. Furthermore, three groups, including MTL, TLL, and the remaining traits, could explain all the variances.

11.
Biosens Bioelectron ; 192: 113495, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34273737

RESUMO

The epithelial-to-mesenchymal transition (EMT) index in cancer is a complementary approach for estimating metastatic risk. Considering the demand for evaluating metastatic risk based on liquid biopsies, tumor-derived extracellular vesicles (EVs) can be exploited to generate the EMT index. For the generation of EVs-based EMT index, it is essential to selectively isolate each epithelial cell and mesenchymal cell-derived EVs. This study proposes a novel microfluidic chip for selectively separating two types of EVs in an efficient and timely manner. The microfluidic chip is fully integrated with a micromixer for the creation of efficient collision between EVs and specific antibody-coated microbeads (7 and 15 µm in diameter) and a hydrodynamic particle separator for the stratification of EVs bound microbeads according to the sizes of microbeads. Using this chip, over 90% of EVs expressing the epithelial marker (epithelial cell adhesion molecule, EpCAM) and the mesenchymal marker (CD49f) can be selectively isolated within 6.7 min per 100 µL of sample volume. The clinical relevance of EMT is investigated using plasma samples from 20 breast cancer patients and 10 age-matched controls. The EMT index produced from the microfluidic chip is in a good agreement with the conventional tissue-based EMT index and is significantly high in patients with aggressive breast cancer subtypes, compared with healthy controls. In addition, the patients with high scores on the EMT index (≥5) shows recurrence within 5 years after adjuvant treatment. Predicting EMT-index-based metastatic risk using our microfluidic chip can be beneficial for cancer diagnosis and prognosis.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Vesículas Extracelulares , Neoplasias da Mama/diagnóstico , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Transição Epitelial-Mesenquimal , Feminino , Humanos , Microfluídica
12.
Theor Appl Genet ; 134(8): 2687-2698, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33974087

RESUMO

KEY MESSAGE: The foxglove aphid resistance gene Raso2 from PI 366121 was fine-mapped to 77 Kb region, and one candidate gene was identified. The foxglove aphid (FA: Aulacorthum solani Kaltenbach) is an important insect pest that causes serious yield losses in soybean. The FA resistance gene Raso2 from wild soybean PI 366121 was previously mapped to a 13 cM interval on soybean chromosome 7. However, fine-mapping of Raso2 was needed to improve the effectiveness of marker-assisted selection (MAS) and to eventually clone it. The objectives of this study were to fine-map Raso2 from PI 366121 using Axiom® 180 K SoyaSNP array, to confirm the resistance and inheritance of Raso2 in a different background, and to identify candidate gene(s). The 105 F4:8 recombinant inbred lines were used to fine-map the gene and to test antibiosis and antixenosis of Raso2 to FA. These efforts resulted in the mapping of Raso2 on 1 cM interval which corresponds to 77 Kb containing eight annotated genes based on the Williams 82 reference genome assembly (Wm82.a2.v1). Interestingly, all nonsynonymous substitutions were in Glyma.07g077700 which encodes the disease resistance protein containing LRR domain and expression of the gene in PI 366121 was significantly higher than that in Williams 82. In addition, distinct SNPs within Glyma.07g077700 that can distinguish PI 366121 and diverse FA-susceptible soybeans were identified. We also confirmed that Raso2 presented the resistance to FA and the Mendelian inheritance for single dominant gene in a different background. The results of this study would provide fundamental information on MAS for development of FA-resistant cultivars as well as functional study and cloning of the candidate gene in soybean.


Assuntos
Afídeos/fisiologia , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Animais , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Glycine max/crescimento & desenvolvimento , Glycine max/parasitologia
13.
J Agric Food Chem ; 69(13): 3836-3847, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33770440

RESUMO

This present study was to identify a novel candidate gene that contributes to the elevated α-linolenic acid (ALA, ω-3) concentration in PE2166 from mutagenesis of Pungsannamul. Major loci qALA5_1 and qALA5_2 were detected on chromosome 5 of soybean through quantitative trait loci mapping analyses of recombinant inbred lines. With next-generation sequencing of parental lines and Pungsannamul and recombinant analyses, a potential gene, Glyma.05g221500 (HD), controlling elevated ALA concentration was identified. HD is a homeodomain-like transcriptional regulator that may regulate the expression level of microsomal ω-3 fatty acid desaturase (FAD3) genes responsible for the conversion of linoleic acid into ALA in the fatty acid biosynthetic pathway. In addition, we hypothesized that a combination of mutant alleles, HD, and either of microsomal delta-12 fatty acid desaturase 2-1 (FAD2-1) could reduce the ω-6/ω-3 ratio. In populations where HD, FAD2-1A, and FAD2-1B genes were segregated, a combination of a hd allele from PE2166 and either of the variant FAD2-1 alleles was sufficient to reduce the ω-6/ω-3 ratio in seeds.


Assuntos
Glycine max , Proteínas de Plantas , Alelos , Ácidos Graxos Dessaturases/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Sementes , Glycine max/genética
14.
Front Plant Sci ; 12: 604709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664756

RESUMO

Phytophthora blight (PB) caused by Phytophthora nicotianae is a highly destructive disease in sesame (Sesamum indicum L.). In this study, we used linkage mapping and genome-wide association study (GWAS) to identify quantitative trait loci (QTL) and candidate genes associated with PB resistance. The QTL mapping in 90 RILs of the Goenbaek × Osan cross using genotyping-by-sequencing detected significant QTLs for PB resistance on chromosome 10, explaining 12.79%-13.34% of phenotypic variation. Association of this locus to PB resistance was also revealed through bulked segregant analysis in second RIL population (Goenbaek × Milsung cross) comprising 188 RILs. The GWAS of 87 sesame accessions evaluated against three P. nicotianae isolates identified 29 SNPs on chromosome 10 significantly associated with PB resistance. These SNPs were located within a 0.79 Mb region, which co-located with the QTL intervals identified in RIL populations, and hence scanned for identifying candidate genes. This region contained several defense-related candidate R genes, five of which were selected for quantitative expression analysis. One of these genes, SIN_1019016 was found to show significantly higher expression in the resistant parent compared to that in the susceptible parents and selected RILs. Paired-end sequencing of the gene SIN_1019016 in parental cultivars revealed two synonymous SNPs between Goenbaek and Osan in exon 2 of coding DNA sequence. These results suggested SIN_1019016 as one of the candidate gene conferring PB resistance in sesame. The findings from this study will be useful in the marker-assisted selection as well as the functional analysis of PB resistance candidate gene(s) in sesame.

15.
J Technol Transf ; 46(3): 563-573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32836769

RESUMO

The globalisation trend of the past few decades, driven to a large extent by the proliferation of GVCs, has led to a set of significant changes in patterns of technology upgrading and new modes of interaction between domestic technology efforts and external sources of technological knowledge. Whether this new dynamic will lead to continuing increase in the economic importance of emerging economies will ultimately depend on whether their productivity growth will be driven by technology upgrading, requiring active and coordinated activity orchestrated by a variety of state and non-state actors under diverse sectoral, regional and national innovation systems. The new dynamic also reinforces the focus on local-global interfaces which becomes ever more important once we recognize that in the 21st century technology upgrading challenges depend much more on improvements in connectivity and on the industrial ecosystem. Still, the globalization process experienced in the past few decades-reflected in this collection of papers-may need to be recalibrated in the face of the drastic geopolitical changes that the process itself has brought about.

16.
Exp Mol Med ; 52(5): 832-842, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32457491

RESUMO

Triple-negative breast cancer (TNBC) is a severe and heterogeneous disease that lacks an approved targeted therapy and has a poor clinical outcome to chemotherapy. Although the RAS-ERK signaling axis is rarely mutated in TNBC, ~50% of TNBCs show an increased copy number and overexpression of epidermal growth factor receptor (EGFR). However, EGFR-targeted therapies have offered no improvement in patient survival, underscoring the need to explore downstream targets, including RAS. We found that both ß-catenin and RAS, as well as epidermal growth factor receptor (EGFR), are overexpressed and correlated with one another in tumor tissues of TNBC patients. KYA1797K, an Axin-binding small molecule reducing ß-catenin and RAS expression via degradation and suppressing EGFR expression via transcriptional repression, inhibited the proliferation and the metastatic capability of stable cell lines as well as patient-derived cells (PDCs) established from TNBC patient tissues. KYA1797K also suppressed the stemness of 3D-cultured PDCs and xenografted tumors established by using residual tumors from TNBC patients and those established by the TNBC cell line. Targeting both the Wnt/ß-catenin and RAS-ERK pathways via small molecules simultaneously reducing the levels of ß-catenin, RAS, and EGFR could be a potential therapeutic approach for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Proteínas ras/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Estabilidade Proteica/efeitos dos fármacos , Tiazolidinas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/etiologia , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Front Plant Sci ; 11: 580085, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424880

RESUMO

The determination of flower color mainly depends on the anthocyanin biosynthesis pathway and vacuolar pH; however, unlike the former, the mechanism of vacuolar acidification in soybean remains uncharacterized at the molecular level. To investigate this mechanism, we isolated four recessive purple-blue EMS-induced flower mutants from the purple flower soybean cultivar, Pungsannamul. The petals of all the mutants had increased pH compared with those of wild Pungsannamul. One of the mutants had a single nucleotide substitution in GmPH4, a regulator gene encoding an MYB transcription factor, and the substitution resulted in a premature stop codon in its first exon. The other three mutants had nucleotide substitutions in GmPH5, a single new gene that we identified by physical mapping. It corresponds to Glyma.03G262600 in chromosome 3 and encodes a proton pump that belongs to the P3A-ATPase family. The substitutions resulted in a premature stop codon, which may be a defect in the ATP-binding capacity of GmPH5 and possibly a catalytic inefficiency of GmPH5. The result is consistent with their genetic recessiveness as well as the high pH of mutant petals, suggesting that GmPH5 is directly involved in vacuolar acidification. We also found that the expression of GmPH5 and several putative "acidifying" genes in the gmph4 mutant was remarkably reduced, indicating that GmPH4 may regulate the genes involved in determining the vacuolar pH of soybean petals.

18.
Genomics ; 112(2): 1481-1489, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31461668

RESUMO

Recombination is a crucial component of evolution and breeding. New combinations of variation on chromosomes are shaped by recombination. Recombination is also involved in chromosomal rearrangements. However, recombination rates vary tremendously among chromosome segments. Genome-wide genetic maps are one of the best tools to study variation of recombination. Here, we describe high density genetic maps of Glycine max and Glycine soja constructed from four segregating populations. The maps were used to identify chromosomal rearrangements and find the highly predictable pattern of cross-overs on the broad scale in soybean. Markers on these genetic maps were used to evaluate assembly quality of the current soybean reference genome sequence. We find a strong inversion candidate larger than 3 Mb based on patterns of cross-overs. We also identify quantitative trait loci (QTL) that control number of cross-overs. This study provides fundamental insights relevant to practical strategy for breeding programs and for pan-genome researches.


Assuntos
Cromossomos de Plantas/genética , Ligação Genética , Glycine max/genética , Troca Genética , Rearranjo Gênico , Melhoramento Vegetal , Locos de Características Quantitativas , Alinhamento de Sequência , Glycine max/classificação
19.
PLoS One ; 14(12): e0225082, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31821346

RESUMO

PURPOSE: A patient-derived xenograft (PDX) model is an in vivo animal model which provides biological and genomic profiles similar to a primary tumor. The characterization of factors that influence the establishment of PDX is crucial. Furthermore, PDX models can provide a platform for chemosensitivity tests to evaluate the effectiveness of a target agent before applying it in clinical trials. METHODS: We implanted 83 cases of breast cancer into NOD.Cg-Prkdcscid Il2rgtm1Sug/Jic mice, to develop PDX models. Clinicopathological factors of primary tumors were reviewed to identify the factors affecting engraftment success rates. After the establishment of PDX models, we performed olaparib and carboplatin chemosensitivity tests. We used PDX models from triple-negative breast cancer (TNBC) with neoadjuvant chemotherapy and/or germline BRCA1 mutations in chemosensitivity tests. RESULTS: The univariate analyses (p<0.05) showed factors which were significantly associated with successful engraftment of PDX models include poor histologic grade, presence of BRCA mutation, aggressive diseases, and death. Factors which were independently associated with successful engraftment of PDX models on multivariate analyses include poor histologic grade and aggressive diseases status. In chemosensitivity tests, a PDX model with the BRCA1 L1780P mutation showed partial response to olaparib and complete response to carboplatin. CONCLUSIONS: Successful engraftment of PDX models was significantly associated with aggressive diseases. Patients who have aggressive diseases status, large tumors, and poor histologic grade are ideal candidates for developing successful PDX models. Chemosensitivity tests using the PDX models provide additional information about alternative treatment strategies for residual TNBC after neoadjuvant chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Proteína BRCA1/genética , Carboplatina/uso terapêutico , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Terapia Neoadjuvante , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
20.
Front Plant Sci ; 10: 1213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736985

RESUMO

In addition to proteins and/or oils, mature seeds of most legume crops contain important carbohydrate components, including starches and sugars. Starch is also an essential nutritional component of human and animal diets and has various food and non-food industrial applications. Starch is a primary insoluble polymeric carbohydrate produced by higher plants and consists of amylose and amylopectin as a major fraction. Legume seeds are an affordable source of not only protein but also the starch, which has an advantage of being resistant starch compared with cereal, root, and tuber starch. For these reasons, legume seeds form a good source of resistant starch-rich healthy food with a high protein content and can be utilized in various food applications. The genetics and molecular details of starch and other carbohydrate components are well studied in cereal crops but have received little attention in legumes. In order to improve legume starch content, quality, and quantity, it is necessary to understand the genetic and molecular factors regulating carbohydrate metabolism in legume crops. In this review, we assessed the current literature reporting the genetic and molecular basis of legume carbohydrate components, primarily focused on seed starch content. We provided an overview of starch biosynthesis in the heterotrophic organs, the chemical composition of major consumable legumes, the factors influencing starch digestibility, and advances in the genetic, transcriptomic, and metabolomic studies in important legume crops. Further, we discussed breeding and biotechnological approaches for the improvement of the starch composition in major legume crops. The information reviewed in this study will be helpful in facilitating the food and non-food applications of legume starch and provide economic benefits to farmers and industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...